Relationship Between the Structures of Ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathbf{F}_{19}$ and Antiferroelectric $\mathbf{P b}_{5} \mathrm{Al}_{3} \mathbf{F}_{19}$ at $\mathbf{2 9 5} \mathbf{K}$ and the Phase III-Phase IV Transition in $\mathrm{Pb}_{5} \mathbf{A l}_{3} \mathbf{F}_{19}$ on Cooling to about 110 K

By V. Andriamampianina, P. Gravereau and J. Ravez
Laboratoire de Chimie du Solide du CNRS, Université Bordeaux I, F-33405 Talence CEDEX, France

and S. C. Abrahams
Physics Department, Southern Oregon State College, Ashland, OR 97520, USA

(Received 17 May 1993; accepted 29 September 1993)

Abstract

Antiferroelectric phase III of lead aluminium fluoride, $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}, M_{r}=1477.9$, tetragonal space group $P 4 / n$. At $T=295 \mathrm{~K}, a=20.1738$ (4) and $c=$ 7.2205 (1) $\AA, V=2939$ (1) $\AA^{3}, Z=8, D_{m}=6.66$ (5), $D_{x}=6.681 \mathrm{Mg} \mathrm{m}^{-3}$. For $\lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA$, $\mu=58.0 \mathrm{~mm}^{-1}, F(000)=4960$. The structure was determined from 18502 (1276 independent) $F_{m}^{2} \geq$ $3 \sigma\left(F_{m}^{2}\right)$ with $(\sin \theta) / \lambda \leq 0.703 \AA^{-1}$. Least-squares refinement on $w F_{m}^{2}$ resulted in $R\left(F_{m}\right)=0.0579$ with $R_{\mathrm{int}}\left(F_{m}\right)=0.048 . \mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ undergoes a first-order phase transition from antiferroelectric to ferroelectric at about 110 K , with a wide thermal hysteresis. Transformation of the atomic coordinates of ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ previously measured at 295 K and comparison with those of antiferroelectric $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ at 295 K reveal differences between related atomic positions that range from 0.10 to $1.56 \AA$. The origin of the first-order transition from the antiferroelectric phase III to ferroelectric phase IV in $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ is shown to be associated with the orientational change from an eclipsed arrangement of AlF_{6} octahedra along the inversion and rotation-tetrad axes in phase III to a staggered arrangement along the rotationtetrad axes in phase IV.

Introduction

$\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ undergoes a first-order phase transition at 555 K (Arquis-Canouet, Ravez \& Abrahams, 1986) that was later shown to be from the paraelectric to the ferroelectric phase, on cooling (Ravez, Andriamampianina, Simon, Grannec \& Abrahams, 1991). The displacement magnitudes of the symmetryindependent Cr atoms from the centers of their fluorine octahedra allow a transition temperature of 630 (30) K to be predicted (Abrahams, Kurtz \& Jamieson, 1968), in satisfactory agreement with experiment (Abrahams, Albertsson, Svensson \& Ravez, 1990). $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ forms a continuous series of ferro-
electric solid solutions with $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$; the transition temperatures of the resulting materials, as measured on heating, decrease smoothly from 555 to 280 K with increasing $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ component (Ravez, Simon, Andriamampianina, Grannec, Hagenmuller \& Abrahams, 1990; Andriamampianina, Ravez, Simon \& Abrahams, 1991). The phase diagram of the $\mathrm{Pb}_{5}\left(\mathrm{Cr}_{1-x} \mathrm{Al}_{x}\right)_{3} \mathrm{~F}_{19}$ system has been determined, under both heating and cooling conditions, by Ravez, Andriamampianina, Simon, Rabardel, Ihringer \& Abrahams (1994).

The low temperature of the phase transition and associated wide thermal hysteresis in $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$, together with the closely related $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ structure, led to the present investigation of the $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ atomic arrangement at room temperature in the possibility that light might thereby be cast upon the structural changes characterizing the transition from the ferroelectric to the antiferroelectric phase. Roomtemperature phase III of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ is referred to as antiferroelectric, rather than as paraelectric, since phase I is the prototypic paraelectric phase stable above 345 K (Ravez et al., 1994) and point group $4 / \mathrm{m}$ for phase III is not a supergroup of 4 mm for ferroelastic phase IV, the stable phase at lower temperatures. The second-order transition from phase I (point group $4 / m$) to phase II (point group $2 / m$) is accompanied by the formation of domains that disappear sharply at the first-order transition from phase II to phase III. The monoclinic distortion in phase II is small, with $a \simeq b$ and maximum departure by the angle β of 0.41 (2) from 90°. The domains in phase II result from the twin law originating in the replacement of fourfold by twofold axes at the higher temperature phase I-phase II transition. Restoration of the fourfold axes on cooling further from phase II to phase III necessarily eliminates all remaining domains at this phase transition, as confirmed by careful optical examination. Etching techniques for revealing the unlikely possibility of domain boundaries were inapplicable. Peritectic decomposition
begins above 925 K , precluding thermal etching; the only solvents capable of chemical etching lead to hydrolysis. The lattice temperature dependence of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ through all three phase transitions has been given in a paper dedicated to Professor E. F. Bertaut on the occasion of his eightieth birthday (Ihringer, Ravez \& Abrahams, 1993).

Crystal growth

The most successful of several crystal-growth methods investigated depend upon a controlled slow cooling of the molten phase. Initial ingredients consisted of a mixture of PbF_{2} and AlF_{3}, with expected purities greater than 99.9%, in the ratio 1.66:1. This mix was placed within a gold tube in a dry box, degassed at 423 K for 4 h and sealed under dry N_{2}. Following heating to 993 K , maintaining this temperature for 24 h and then cooling to 823 K at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$, the furnace was allowed to return to room temperature by natural cooling. The gold tube was typically found to contain many transparent colorless single crystals, generally in the form of rectangular prisms elongated along the c axis. Average crystal dimensions are about $0.1 \times 0.1 \times 0.5 \mathrm{~mm}$.

Structural measurement

All integrated intensities within the volume of reciprocal space bounded by $h-28 \rightarrow 28, k-28 \rightarrow$ 28, $l 0 \rightarrow 10$ and $0 \leq \theta \leq 30^{\circ}$ were measured at $T=$ 295 K using an Enraf-Nonius CAD-4 diffractometer with a prismatic $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ crystal of good optical quality that exhibited sharp extinction and that had the dimensions $0.115 \times 0.134 \times 0.120 \mathrm{~mm}$. Mo $K \alpha$ radiation diffracted by a graphite monochromator was used with $\omega-2 \theta$ scans over an angular range 0.60 $+0.35^{\circ} \tan \theta$. Reflection halfwidths ranged from 0.15 to $0.30^{\circ} \theta$. Three standard reflections were measured following each 200th reflection. The total exposure time was 360 h . No systematic variation was detected in the intensity of the standards as a function of exposure. Transmission factors obtained by integration from the crystal shape ranged from 0.0136 to 0.0488 . Weights, calculated only from counting statistics, were taken as $1 / \sigma^{2}\left(F_{m}\right)$.

The diffraction symmetry of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III is $4 / \mathrm{m}$. The only systematically absent reflections are $h k 0$ with $h+k=2 n+1$, hence the most likely space group is $P 4 / n$. The primitive unit cell of phase III is rotated 45° about c with respect to the orientation of phases I, II or IV (Ravez et al., 1994). The I centering of these three phases results in pseudo F centering for phase III, as may be noted in the intensity condition that $I(h k l)$ with $h+k, k+l$, $h+l=2 n$ is generally much stronger than are reflections with odd index-pair values, see Supplementary

Publication No. SUP 71567.* Structure refinement of phase III was initiated on the assumption that the Pb -atom distribution would be similar to that in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ (Abrahams et al., 1990). Successive electron-density difference maps revealed the location of the five independent Al and 22 independent F atoms. Least-squares refinement with the SHELX (Sheldrick, 1976) program, based on isotropic thermal vibrations, resulted in $R=0.077$, $w R=0.087$. Inclusion of individual $B_{\text {iso }}$ parameters for all Al and F atoms led to a wide range of values, some of which were without physical significance. Fitting anisotropic displacement coefficients to each Pb atom, but with a common variable B_{iso} parameter for all Al atoms and another for all F atoms, it was found necessary to set the z coordinates of F1 and F2 in Wyckoff position 2(c) to the fixed values of 0 and $\frac{1}{2}$ respectively in order to avoid abnormal Al-F distances resulting from the refinement; however, omitting these atoms from the structure-factor calculations led to the appearance of $\sim 17 \mathrm{e} \AA{ }^{3}$ maxima in the ensuing difference maps at about ${ }_{4}^{1}, \frac{1}{4}, z$ with $z=0$ and $\frac{1}{2}$. The heights of the other F atoms in earlier difference maps ranged from 10.2 to $19.5 \mathrm{e} \AA^{-3}$. The final atomic coordinates presented in Table 1 correspond to $R=0.0579, w R=0.0648$ and $S=1.837$ for a total of 112 variables, based on the empirical correction for extinction given by $F_{\text {corr }}=$ $F_{m}\left[1-10^{-4} g F_{m}^{2} /(\sin \theta)\right]$ with $g=8(1) \times 10^{-5}$. Oscillatory behavior in refinement led slowly to the final minimum in $w R$ with no value of Δ / σ exceeding 0.3 . The largest residual in the corresponding final difference map was a feature of $6 \mathrm{e} \AA^{-3}$ magnitude located about $1 \AA$ from Pb 5 at $z \simeq 0.237$.

$\mathbf{P b}_{5} \mathbf{A l}_{3} \mathbf{F}_{19}$ antiferroelectric phase III

The structure of antiferroelectric phase III generally resembles that of ferroelectric phase IV. Both consist of infinite corner-sharing chains of AlF_{6} octahedra. individual AlF_{6} octahedra, individual F ions and Pb^{2+} ions occupying the polyhedra formed by the F^{-}ions. As may be seen in Fig. 1, all octahedra in the infinite chains of phase III have the same orientation leading to an eclipsed configuration along the c axis. The doubling of the unit cell volume in this phase, with respect to phase IV, results from the formation of two different sets of corner-sharing chains, one containing symmetry-independent All F_{6} and Al2 F_{6} octahedra, and the other consisting

[^0]Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent (Pb) or isotropic (Al, F) displacement coefficients $\left(\AA^{2}\right)$ for phase III at 295 K

$B_{\mathrm{cq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{t}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.					
	Wyckoff position	x	y	z	$B_{\text {cq }} / B_{\text {iso }}$
Pb 1	$8(\mathrm{~g})$	1734 (1)	867 (1)	91 (5)	1.74 (12)
Pb2	8(g)	1102 (1)	1741 (1)	5037 (4)	1.21 (11)
Pb3	$8(g)$	1700 (1)	8889 (1)	7 (5)	1.16 (11)
Pb4	$8(g)$	9118 (1)	1722 (1)	4958 (5)	1.40 (11)
Pb5	$8(g)$	9932 (2)	9858 (2)	2352 (9)	3.57 (14)
All	2(c)	,	$\frac{1}{4}$	2389 (68)	0.83 (10) \dagger
Al2	2(c)	$\frac{1}{4}$	$\frac{1}{4}$	7580 (110)	0.83 (10) \dagger
Al3	$4(f)$	$\frac{1}{4}$	$\frac{3}{4}$	2437 (50)	0.83 (10) \dagger
Al4	$8(\mathrm{~g})$	72 (9)	1663 (9)	54 (32)	0.83 (10) \dagger
Al5	$8(\mathrm{~g})$	8345 (10)	97 (9)	4921 (29)	0.83 (10) \dagger
F1	2(c)	,	+	${ }_{\dagger}^{+}$	2.17 (11) \dagger
F2	2(c)	$\frac{1}{4}$	$\frac{1}{4}$	if	2.17 (11) \dagger
F3	$8(g)$	2150 (15)	1686 (17)	2322 (63)	2.17 (11) \dagger
F4	$8(\mathrm{~g})$	2809 (15)	3322 (16)	7553 (69)	2.17 (11) \dagger
F5	2(a)	,	3	0	2.17 (11) \dagger
F6	$8(g)$	8334 (16)	2171 (16)	2232 (60)	2.17 (11) \dagger
F7	$8(g)$	1669 (16)	7821 (17)	2329 (67)	2.17 (11) \dagger
F8	2(b)	${ }_{4}^{3}$	1	$\frac{1}{2}$	2.17 (11) \dagger
F9	$8(g)$	695 (18)	1718 (18)	8438 (60)	2.17 (11) \dagger
F10	$8(g)$	9509 (17)	1383 (18)	8415 (55)	2.17 (11) \dagger
F11	$8(\mathrm{~g})$	9445 (18)	1475 (19)	1578 (52)	2.17 (11) \dagger
F12	$8(g)$	664 (17)	1931 (18)	1682 (57)	2.17 (11) \dagger
F13	$8(g)$	9883 (16)	2519 (16)	9837 (76)	2.17 (11) \dagger
F14	$8(g)$	307 (19)	820 (18)	434 (51)	2.17 (11) \dagger
F15	$8(g)$	9230 (17)	331 (17)	5062 (71)	2.17 (11) \dagger
F16	$8(\mathrm{~g})$	8569 (17)	9462 (17)	3154 (54)	2.17 (11) \dagger
F17	$8(\mathrm{~g})$	8428 (17)	9424 (17)	6774 (55)	2.17 (11) \dagger
F18	$8(g)$	8170 (17)	732 (18)	6731 (64)	2.17 (11) \dagger
F19	$8(g)$	8316 (17)	740 (16)	3176 (59)	2.17 (11) \dagger
F20	$8(\mathrm{~g})$	7487 (17)	9896 (18)	4546 (71)	2.17 (11) \dagger
F21	$8(\mathrm{~g})$	8980 (18)	227 (20)	-96 (63)	2.17 (11) \dagger
F22	$8(\mathrm{~g})$	190 (19)	1064 (17)	5122 (70)	2.17 (11) \dagger

+ Common variable $B_{\text {iso }}$ coefficient for all Al , also for all F , atoms with e.s.d.'s from the least-squares refinement.
\ddagger Unvaried coordinate.

Fig. 1. Projection of the antiferroelectric $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III structure along the c axis, with AlF_{6} octahedra shown shaded. The larger open circles represent Pb and the smaller filled circles the F21 and F22 atoms, see Table 1.
entirely of $\mathrm{Al} 3 \mathrm{~F}_{6}$ octahedra, above the transition. The remaining independent $\mathrm{Al} 4 \mathrm{~F}_{6}$ and $\mathrm{Al} 5 \mathrm{~F}_{6}$ octahedra are oriented approximately normal to the c axis. The distribution of the five symmetryindependent Pb^{2+} and two F^{-}ions is also shown in Fig. 1. The related but reoriented structure of ferroelectric phase IV is shown in Fig. 2. The cornersharing chains of All, Al2 and Al3 octahedra, and also the individual Al4 and Al5 octahedra, are shown in Fig. 3 as viewed along an a axis.

$\mathbf{P b}_{5} \mathbf{A l}_{3} \mathbf{F}_{19}$ ferroelectric phase IV

The lattice constants of ferroelectric $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase IV at 150 K are $a=14.100$ (3) and $c=7.344$ (2) \AA, whereas those of ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ at 295 K are

Fig. 2. Projection of the ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ structure along the c axis, with axes rotated and the origin translated from the atomic coordinates given by Abrahams et al. (1990), as noted in the text, for comparison with Fig. 1.

Fig. 3. Projection of the $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III structure along an a axis, showing the infinite chains both of corner-sharing Al1, Al2 octahedra and corner-sharing Al3 octahedra.
$a=14.384$ (5) and $c=7.408$ (2) \AA (Arquis-Canouet et al., 1986). The a axes of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$, rotated 45° about c in antiferroelectric phase III, increase abruptly in length by about 0.8% to $14.265 \sqrt{ } 2 \AA$ on heating through the 285 (15) K transition, T_{c}, while the c axis decreases equally abruptly by about 1.7% to 7.220 (5) \AA (Andriamampianina et al., 1991). The close match between the lattice parameters of $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ and $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ and the continuous formation of solid solutions of the two materials over the whole composition range (Ravez et al., 1990) strongly suggest that the two are isostructural in their ferroelectric phase. The atomic coordinates of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ in ferroelectric phase IV, stable below 285 K on heating and below 110 K on cooling, may hence be taken as closely comparable to those found in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ at room temperature.

The transformation of the atomic coordinates (x, y, z) in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ to a unit cell setting corresponding to that of antiferroelectric $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ in phase III requires an origin shift of $\frac{1}{2}, 0, \frac{1}{2}$ followed by rotation of the a, b axes through 45°, as given by $x^{\prime}=(2 x+2 y-1) / 4, \quad y^{\prime}=(1-2 x+2 y) / 4$ and $z^{\prime}=$ $\left(z-\frac{1}{2}\right)$. The resulting transformed coordinates are shown in Table 2, including the addition of a further translation of 0.04 to all z^{\prime} coordinates. This additional translation arises from the need to match the arbitrary origin chosen along the polar c axis in ferroelectric phase IV to the fixed origin at the inversion center in antiferroelectric phase III. The atomic numbering in Table 2 corresponds to that in Table 1, with the atomic numbering for the derivative $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ phase at room temperature (Abrahams et al., 1990) given as a subscript. The primes in the transformed $x^{\prime} y^{\prime} z^{\prime}$ coordinates are suppressed in Table 2.

Comparison of the antiferroelectric $\mathbf{P b}_{5} \mathbf{A l}_{3} \mathbf{F}_{19}$ phase III and ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathbf{F}_{19}$ structures

The atomic arrangement of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III at 295 K determined in the present study is displayed in Fig. 1, that corresponding to the transformed $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ atomic coordinates in Fig. 2. Inspection of Table 2 reveals a total range of differences Δ between the two structures $0.10 \leq \Delta \leq 1.56 \AA$. It may be noted that these differences do not necessarily correspond precisely to the atomic displacements that take place at the transition from the ferroelectric to the nonpolar phase in either $\mathrm{Pb}_{5} M_{3} \mathrm{~F}_{19}$ material ($M=$ $\mathrm{Cr}, \mathrm{Al})$. Even if the two ferroelectric structures were exactly isostructural, it is unlikely that either coordinate set determined at 295 K would coincide exactly with the actual structures in the thermal regime immediately above or below $T_{c}\left(\mathrm{~Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}\right)$ or $T_{c}\left(\mathrm{~Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}\right)$. It is to be expected that many values of Δ in either material will be smaller than those
listed in Table 2 at temperatures approaching T_{c}; the largest values listed, however, are likely to remain close to those found at T_{c}, see First-order transition from phase IV to phase III.

Further examination of the differences between corresponding atoms in $M \mathrm{~F}_{6}$ octahedra in the ferroelectric and antiferroelectric phases is revealing. The two symmetry-independent CrF_{6} octahedra in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ at $x=0$ and $x=\frac{1}{4}, y=\frac{1}{4}$ (see Fig. 2) become five independent octahedra in $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III. Corner-sharing $M \mathrm{~F}_{6}$ octahedra are located within the unit cells of both phases at $x=\frac{1}{4}, y=\frac{1}{4}$ and $x=\frac{1}{4}, y=\frac{3}{4}$. In phase III, the All F_{6} and Al2 F_{6} octahedra on the 4 axis at the former location are fully eclipsed, as are the two $\mathrm{Al3} \mathrm{~F}_{6}$ octahedra on the $\overline{4}$ axis at the latter location. By contrast, in phase IV these octahedra exhibit the staggered configuration clearly visible in Fig. 2. Three independent octahedra in phase III and the corresponding octahedron in phase IV have $\mathrm{F}-M-\mathrm{F}$ axes parallel to the c axis. These three are now considered in detail. In the case of the $M 1_{2}-1^{\prime}$ octahedron (see Table 2 for the designation of atoms and symmetry codes), the ferroelectric dipole originating in the displacement of the M atom from the octahedron center is positive in the ferroelectric phase, i.e. toward F2. This dipole sense is reversed in the centrosymmetric phase as all atoms in the octahedron are displaced at the transition toward higher z values, with an atomic displacement of about $0.14 \AA$ by the M atom; the dipole is, of course, exactly cancelled within the unit cell by the operation of the inversion centers to form an antiferroelectric array. The major orientational change in this octahedron between the two phases is a rotation of about 48° in the $a b$ plane by the group of four F3 atoms.
The $M 2_{2}-6$ octahedron, by contrast, undergoes only a rotation of about 2° in the $a b$ plane in the course of the transition between ferroelectric and antiferroelectric phases. The positive dipole moment of this octahedron in the ferroelectric phase, as in the case of the $M 1_{2}-1^{\prime}$ octahedron, becomes reversed in the centrosymmetric phase. All octahedral and other dipoles are necessarily cancelled in space group $P 4 / n$ by the inversion-center operation. The $M 2_{2}-6$ octahedron undergoes a translation of about $0.2 \AA$ along the c axis in the transition between the two phases.
The $M 3_{2}-6^{\prime}$ octahedron similarly has a positive dipole below T_{c} that becomes reversed in a sense above the phase transition. This octahedron only rotates by about 3° in the $a b$ plane as it is translated about $0.1 \AA$ up the c axis. The $M 3_{2}-1$ octahedron, with the M atom at $\frac{1}{4}, \frac{3}{4}, 0.7199$ in the ferroelectric phase, rotates about 48° in the $a b$ plane at the transition to the antiferroelectric phase; it undergoes a translation of about $0.28 \AA$ at the transition, see Tables 1 and 2.

Table 2. Atomic coordinates ($\times 10^{4}$) of $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ at 295 K transformed to the unit-cell setting for $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III and the corresponding atomic displacements (\AA) between phases IV and III

	Symmetry code*	x	y	z	$\Delta x \dagger$	Δy	Δz	Δ
Pblı \ddagger	$5{ }^{\prime \prime}$	1732 (3)	996 (3)	400	0.004	-0.260	-0.223	0.343
Pb 2,	1	996 (3)	1732 (3)	5400	0.214	0.018	-0.262	0.343
$\mathrm{Pb} 3_{1}$	$4{ }^{\prime}$	1732 (3)	9004 (3)	400	-0.065	-0.232	-0.284	0.372
$\mathrm{Pb4}_{1}$	8	9004 (3)	1732 (3)	5400	0.230	-0.020	-0.319	0.394
$\mathrm{Pb5}_{2}$	1 '	0	0	1908 (8)	-0.137	-0.286	0.321	0.451
Crl_{2}	$1{ }^{\prime}$	2500	2500	2199 (6)	0	0	0.137	0.137
Cr_{2}	6	2500	2500	7199 (6)	0	0	0.275	0.275
Cr_{2}	$6{ }^{\prime}$	2500	7500	2199 (6)	0	0	0.172	0.172
$\mathrm{Cr} 4^{1}$	$7{ }^{\prime}$	0	1632 (6)	293 (12)	0.145	0.063	-0.173	0.234
Cr 5 ,	4	8368 (6)	0	5293 (12)	-0.046	0.196	-0.269	0.336
Fl_{7}	5	2500	2500	- 277 (71)	0	0	0.200	0.200
F_{7}	$1{ }^{\prime}$	2500	2500	4723 (71)	0	0	0.200	0.200
F_{3}	6	1639 (14)	2208 (14)	2275 (37)	1.031	-1.053	0.034	1.474
F_{3}	$5^{\prime \prime \prime}$	3361 (14)	2792 (14)	7275 (37)	1.114	1.069	0.201	1.557
F5,	1	2500	7500	- 277 (71)	0	0	0.200	0.200
F_{3}	4	8361 (14)	2208 (14)	2275 (37)	-0.054	-0.075	-0.031	0.097
F_{3}	3	1639 (14)	7792 (14)	2275 (37)	0.061	0.059	0.039	0.093
F8,	5	7500	2500	4723 (71)	0	0	0.200	0.200
F9,	2^{\prime}	714 (16)	1799 (16)	8674 (31)	-0.038	0.163	0.170	0.239
F10,	7	9286 (16)	1799 (16)	8674 (31)	0.450	-0.839	-0.187	0.970
$\mathrm{Fl1}_{2}$	2^{\prime}	9353 (11)	1338 (11)	2055 (16)	0.186	0.276	-0.344	0.479
$\mathrm{Fl2}_{2}$	7	647 (11)	1338 (11)	2055 (16)	0.034	1.196	-0.269	1.226
$\mathrm{Fl3}_{4}$	2^{\prime}	0	2523 (11)	971 (27)	0.236	0.008	-0.819	0.852
F14 6	$7{ }^{\prime}$	0	720 (14)	-428 (44)	0.619	0.202	0.622	0.900
F156	4	9280 (14)	0	4572 (44)	-0.101	0.668	0.354	0.763
F16,	5	8202 (16)	9286 (16)	3674 (31)	0.740	0.355	-0.375	0.902
$\mathrm{Fl7}_{2}$	4	8663 (11)	9353 (11)	7055 (16)	-0.474	0.143	-0.203	0.535
F182	5	8663 (11)	647 (11)	7055 (16)	-0.995	0.171	-0.234	1.036
F19,	4	8202 (16)	714 (16)	3674 (31)	0.230	0.052	-0.360	0.430
F20,	4	7477 (11)	0	5971 (27)	0.020	-0.210	- 1.029	1.050
F21,	6	8856 (68)	0	595 (37)	0.250	0.458	-0.499	0.722
F22,	1	0	1144 (8)	5595 (37)	0.383	-0.161	-0.342	0.538

* (1) x, y, z; (2) $-x,-y, z$; (3) $-y, x, z$; (4) $y,-x, z$; (5) $\frac{1}{2}-x, \frac{1}{2}+y, z$; (6) $\frac{1}{2}+x, \frac{1}{2}-y, z ;(7) \frac{1}{2}+y, \frac{1}{2}+x, z$; (8) $\frac{1}{2}-y, \frac{1}{2}-x, z$. A prime indicates an additional translation of $+\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, a double prime $+\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$, a triple prime $+(0,1,0)$.
$\dagger \Delta x, \Delta y, \Delta z$ are the differences between corresponding atomic coordinates along the $a^{\prime}, b^{\prime}, c^{\prime}$ axes of the $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19} \mathrm{and} \mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ structures, with $\Delta=(\Delta x+\Delta y+\Delta z)^{1 / 2}$. The lattice parameters of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ are used to calculate the displacements Δ.
\ddagger Subscript is atom number in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ structure (Abrahams, Albertsson, Svensson \& Ravez, 1990).

The remaining independent octahedra are seen in Figs. 1 and 2 to be rotated, with respect to the $M 1$, $M 2$ and $M 3$ octahedra, by about 45° in the $b c$ or $a c$ planes. The F13-M4-F14 axis in the $M 4_{1}{ }^{-} 7^{\prime}$ octahedron rotates between phases III and IV by about 23° in the $b c$ plane and about 14° in the $a b$ plane, while the entire octahedron translates along the c axis about $0.2 \AA$. The dipole associated with this octahedron is small below the phase transition, becoming fully cancelled in the antiferroelectric phase as a result of the inversion-center operation. The $M 5$, -4 octahedron undergoes a rotation of about 22° in the $a c$ plane and about 14° in the $a b$ plane, with a translation along the c axis of about $0.3 \AA$ between phases; the intrinsic dipole of this octahedron is small below T_{c}, with cancellation in the antiferroelectric phase.

First-order transition from phase IV to phase III

The origin of the first-order ferroelectric-to-nonpolar phase transition exhibited by the $\mathrm{Pb}_{5} M_{3} \mathrm{~F}_{19}$ materials is clearly associated with the major atomic dis-
placements arising from the $M \mathrm{~F}_{6}$ octahedral rotations and translations. Further experiment is required to determine if the total $M 4_{1}-7^{\prime}$ and $M 5_{1}-4$ octahedral rotations noted in the previous section of about 25° for each remain as large between the two phases, for a given M atom, as the temperature approaches T_{c}. The orientation of these two octahedra in the ferroelectric phase could, in principle, move closer to that taken in the antiferroelectric phase as a smooth function of temperature, as would be the case in a second-order phase transition. However, the orientational difference between staggered pairs of $M 1_{2}-1^{\prime}, M 2_{2}-6$ and $M 3_{2}-6^{\prime}, M 3_{2}-1$ octahedra along the fourfold rotation axes in the ferroelectric phase and the eclipsed orientation of the corresponding pairs found along the inversion- and rotation-tetrad axes in the antiferroelectric phase necessarily persists until the Curie temperature is reached. The thermodynamic barrier associated with an orientational change in these pairs of octahedra as large as that inferred in the present study is entirely consistent with the thermal hysteresis of about 170 K and the coexistence of both phases over about 20 K
reported at the transition in $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ from phase III to phase IV on cooling (Ravez et al., 1994).

Table 3. Interatomic distances (\AA) in $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ phase III at 295 K

Interatomic distances in $\mathbf{P b}_{\mathbf{5}} \mathrm{Al}_{\mathbf{3}} \mathbf{F}_{\mathbf{1 9}}$ phase III at $\mathbf{2 9 5} \mathbf{K}$

The interatomic distances in antiferroelectric $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ at room temperature, corresponding to the atomic coordinates in Table 1, are given in Table 3 and may be compared with those found in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ and elsewhere (Abrahams et al., 1990). The two independent CrF_{6} octahedra in $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$ at 295 K have average $\mathrm{Cr}-\mathrm{F}$ distances of 1.922 (25) and 1.851 (9) \AA. Standard deviations for all average interatomic distances are calculated from Bessel's formula. The corresponding average Al-F distances in the five symmetry-independent AlF_{6} octahedra are 1.795 (51) \AA for All, 1.782 (36) \AA for $\mathrm{Al} 2,1.806$ (39) \AA for $\mathrm{Al} 3,1.750$ (30) \AA for Al 4 and 1.850 (42) \AA for $\mathrm{Al5}$; the overall average of 1.796 (39) \AA for the $\mathrm{Al}-\mathrm{F}$ distance in phase III of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ is hence $0.091 \AA$ less than the average of $1.887 \AA$ for the $\mathrm{Cr}-\mathrm{F}$ distance in ferroelectric $\mathrm{Pb}_{5} \mathrm{Cr}_{3} \mathrm{~F}_{19}$. The effective ionic radius of Al^{3+} in six coordination as reported by Shannon (1976) is $0.080 \AA$ less than that of Cr^{3+}, in good agreement with the present difference found in ionic radii.

The Pb^{2+} ion forms four nine- and one tencoordinated F polyhedra in antiferroelectric phase III of $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$. The range of $\mathrm{Pb}-\mathrm{F}$ distances is large in each polyhedron, with a minimum of 2.249 (43) \AA in the $\mathrm{Pb} 3 \mathrm{~F}_{10}$ and a maximum of 3.048 (40) \AA in both $\mathrm{Pb} 2 \mathrm{~F}_{9}$ and $\mathrm{Pb} 4 \mathrm{~F}_{9}$ polyhedra. The average $\mathrm{Pb}-\mathrm{F}$ distances are 2.66 (23) \AA for nine-coordinated $\mathrm{Pbl}, \quad 2.72$ (23) \AA for ninecoordinated $\mathrm{Pb} 2,2.66$ (25) \AA for ten-coordinated $\mathrm{Pb} 3,2.72$ (17) \AA for nine-coordinated Pb 4 and 2.66 (15) \AA for nine-coordinated Pb 5 . The effective ionic radii of $1.49 \AA$ for Pb^{2+} in nine- and $1.54 \AA$ for Pb^{2+} in ten-coordination reported by Shannon (1976), corresponding to $\mathrm{Pb}-\mathrm{F}$ distances of 2.66 and $2.71 \AA$, respectively, are fully consistent with the present results. 16 of the 20 independent F atoms in this structure are associated with PbF_{n} polyhedra, with atoms $\mathrm{F} 1, \mathrm{~F} 2$, F5 and F8 not forming $\mathrm{Pb}-\mathrm{F}$ bonds.

It has been proposed that the sequence of phase transitions in the $\mathrm{Pb}_{5} M_{3} \mathrm{~F}_{19}$ materials is strongly influenced by the interaction of the Pb^{2+} ion lone pair of six $s p^{2}$ electrons with the $M^{3+} \mathrm{F}_{6}$ octahedra (Ravez et al., 1994). Evidence for the orientation of the lone pair within each of the five symmetryindependent PbF_{n} polyhedra may be sought by an examination of their distortions. All five PbF_{n} polyhedra are strongly distorted; $\mathrm{Pbl} \mathrm{F}_{9}$ may be described as a distorted tricapped trigonal antiprism having F4, F9 and F16 in a lower scalene and F3,

All-Fl	1.73 (5)*	$\mathrm{Al} 2-\mathrm{F} 1^{16}$	1.75 (8)
	1.79 (3)		1.77 (6)
-F2	1.89 (5)	-F2	1.86 (8)
$\mathrm{Al3}-\mathrm{F} 5$	1.76 (4)	Al4-F9 ${ }^{6}$	1.72 (4)
	1.80 (3)	-F11 ${ }^{19}$	1.72 (4)
	1.81 (3)	-F10 ${ }^{18}$	1.74 (4)
-F8 ${ }^{1}$	1.85 (4)	-F12	1.76 (4)
		-F13 ${ }^{18}$	1.78 (4)
Al5-F20 ${ }^{20}$	1.80 (4)	-F14	1.79 (4)
-F19	1.81 (4)		
-F15	1.85 (4)		
-F16 ${ }^{20}$	1.86 (4)		
-F18	1.86 (5)		
-F17 ${ }^{20}$	1.91 (4)		
$\mathrm{Pb} 1-\mathrm{F} 17^{1}$	$2.36 \text { (4) }$	$\mathrm{Pb} 2-\mathrm{F} 22$	2.29 (4)
-F3	2.46 (4)	-F20 ${ }^{2}$	2.53 (4)
-F13 ${ }^{2}$	2.50 (4)	-F9	2.59 (4)
-F16 ${ }^{3}$	2.51 (4)	-F16 ${ }^{1}$	2.84 (4)
-F21 ${ }^{4}$	2.64 (4)	-F17	2.85 (4)
-F14	2.89 (4)	-F4 ${ }^{1}$	2.85 (4)
-F12 ${ }^{\text {s }}$	2.96 (4)	-F3	2.89 (4)
-F9 ${ }^{\circ}$	2.96 (4)	-F4 ${ }^{\text {\% }}$	3.05 (4)
$\mathrm{Pb} 3-\mathrm{F} 21^{3}$	2.25 (4)	$\mathrm{Pb} 4-\mathrm{F} 22^{10}$	2.54 (5)
-F19 ${ }^{3}$	2.42 (3)	-F20 ${ }^{11}$	2.54 (4)
-F18 ${ }^{1}$	2.49 (4)	-F11	2.58 (4)
-F13 ${ }^{8}$	2.55 (4)	-F6	2.68 (4)
-F11 ${ }^{3}$	2.68 (4)	-F7 ${ }^{1}$	2.68 (4)
-F6 ${ }^{3}$	$2.68 \text { (4) }$	-F10	2.71 (4)
-F7	2.73 (4)	-F15	2.82 (4)
-F10 ${ }^{1}$		-F19	2.86 (4)
$-\mathrm{F} 6^{5}$	2.75 (4) 3.00 (4)	-F18	3.05 (4)
-F7 ${ }^{9}$	3.04 (4)		
$\mathrm{Pb} 5-\mathrm{F} 14^{3}$	2.48 (4)	$\mathrm{Pb} 5-\mathrm{F} 21^{13}$	2.71 (4)
-F14 ${ }^{12}$	2.50 (4)	-F21 ${ }^{15}$	2.74 (4)
-F15 ${ }^{14}$	2.55 (5)	-F10 ${ }^{14}$	2.80 (4)
-F1513	2.60 (5)	-F16	2.92 (4)
-F22 ${ }^{1}$	2.62 (5)		

* Symmetry codes for Table 3: (1) $1-x, 1-y, 1-z$; (2) $\frac{1}{2}-y$, $-1+x,-1+z ;$ (3) $1-x, 1-y,-z$; (4) $1-x,-y,-z ;$ (5) $\frac{1}{2}-y$, x, z; (6) $x, y,-1+z$; (7) $1-y,-\frac{1}{2}+x, 1-z$; (8) $\frac{1}{2}-y, x,-1+z$; (9) $-\frac{1}{2}+y, 1-x,-z$; (10) $1+x, y, z$; (11) $2-y,-\frac{1}{2}+x, 1-z$; (12) $1+x, 1+y, z ;$ (13) $x, 1+y, z ;$ (14) $2-x, 1-y, 1-z ;$ (15) $2-x, 1-y,-z$; (16) $x, y, 1+z$; (17) $y, 3^{3}-x, z ;$ (18) $-1+x$, $y,-1+z ;(19)-1+x, y, z ;(20) x,-1+y, z ;(21) \frac{1}{2}-x, \frac{1}{2}-y, z ;$ (22) $\frac{1}{2}-x, \frac{1}{2}-y, z-1$.

F12 and F17 in an upper scalene (along the c axis) with F13 and F14 capping faces and F21 capping an edge. The $\mathrm{Pb} 2 \mathrm{~F}_{9}$ polyhedron may be described as having an upper scalene of F3, F12 and F17 atoms and a lower pair of two F4, F9 and F16 scalenes sharing an F4, F9 edge, with F20 and F22 as capping atoms. $\mathrm{Pb} 3 \mathrm{~F}_{10}$ forms a bicapped diagonally compressed cuboid with two F6, two F7, F10, F11, F18 and F19 at the vertices and F13, F21 as capping atoms. $\mathrm{Pb} 4 \mathrm{~F}_{9}$ may be described as a distorted tricapped trigonal prism formed by the scalenes F6, F7, F20 and F10, F15, F22 with F11 capping a prism face and F18, F19 each capping an edge. The fifth polyhedron, $\mathrm{Pb} 5 \mathrm{~F}_{9}$, is similarly a distorted tricapped trigonal prism formed by the scalene F10, F14, F16 together with F14 and two F15 atoms; in addition, two F21 atoms and F22 each cap a prism face.

It may be noted that the only polyhedra in phase III similar in shape to those reported in phase IV are $\mathrm{Pb} 4 \mathrm{~F}_{9}$ and $\mathrm{Pb} 5 \mathrm{~F}_{9}$; these are also the only two polyhedra with all $\mathrm{Pb}-\mathrm{F}$ distances greater than about $2.5 \AA$. The three other polyhedra each have one short $\mathrm{Pb}-\mathrm{F}$ distance, 2.36 (4) \AA for Pbl , 2.29 (4) \AA for Pb 2 and 2.25 (4) \AA for Pb 3 . Bond overlap with the lone pair is expected to reduce the $\mathrm{Pb}-\mathrm{F}$ distance. It may also be noted that the short $\mathrm{Pb}-\mathrm{F}$ distances in the Pb 2 and Pb 3 polyhedra are directed toward capping atoms. Direct determination by X-ray diffraction of the lone-pair orientation in these Pb compounds requires a structure-factor accuracy no less than about 1%, an achievement that will become possible with the growth of larger and higher quality crystals. Investigation of the $\mathrm{Pb}_{5} \mathrm{Al}_{3} \mathrm{~F}_{19}$ structure in the remaining phases, now in progress, may contribute further to understanding the rôle of the Pb lone pair.

References

Abrahams, S. C., Albertsson, J., Svensson, C. \& Ravez, J. (1990). Acta Cryst. B46, 497-502.
abrahams, S. C., Kurtz, S. K. \& Jamieson, P. B. (1968). Phys. Rev. 172, 551-553.
Andriamampianina, V., Ravez, J., Simon, A. \& Abrahams, S. C. (1991). Phase Transit. 33, 77-79.

Arquis-Canouet, S., Ravez, J. \& Abrahams, S. C. (1986). J. Appl. Cryst. 19, 374-376.
Ihringer, J., Ravez, J. \& Abrahams, S. C. (1993). Zeit. Kristallogr. In the press.
Ravez, J., Andriamampianina, V., Simon, A., Grannec, J. \& Abrahams, S. C. (1991). J. Appl. Phys. 70, 1331-1336.
Ravez, J., Andriamampianina, V., Simon, A., Rabardel, L., Ihringer, J. \& Abrahams, S. C. (1994). J. Appl. Cryst. In the press.
Ravez, J., Simon, A., Andriamampianina, V., Grannec, J., Hagenmuller, P. \& Abrahams, S. C. (1990). J. Appl. Phys. 68, 3529-3531.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1994). B50, 141-146

Space Group of the Trirutile Type Structure of $\mathrm{Li}_{2} \mathbf{M o F}_{6}$

By Werner H. Baur
Institut für Kristallographie und Mineralogie, Senckenberganlage 30, D-60054 Frankfurt am Main, Germany

(Received 2 August 1993; accepted 27 October 1993)

Abstract

Dilithium molybdenum hexafluoride, $\mathrm{Li}_{2} \mathrm{MoF}_{6}$, tetragonal, $\quad M_{r}=223.83, \quad a=4.6863$ (7), $\quad c=$ 9.191 (2) $\AA, \quad V=201.8$ (2) $\AA^{3}, \quad D_{x}=3.683 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, F(000)=206$, single crystal refinement to $R=0.057$ in space group $P 4_{2} / m 2_{1} / n 2 / m$ based on 371 structure factors measured on a diffractometer by Brunton [(1971). Mater. Res. Bull. 6, 555] who preferred in his refinement of the same data space group $P 4_{2} 2_{1}$. Refinements in space groups $P 4_{2}, P 4_{2} 2_{1} 2$ and $P 4_{2} / m 2_{1} / n 2 / m$ show that $\mathrm{Li}_{2} \mathrm{MoF}_{6}$ crystallizes in the most highly symmetric of these space groups and is, therefore, isostructural with the aristotypic trirutile type. The decision for space group $P 4_{2} / m 2_{1} / n 2 / m$ is based on the shape and orientation of the displacement ellipsoid of the $\mathrm{F}(1)$ atom and on the extremely high R value of the reflections not obeying the extinction condition of the n glide in space group $P 4_{2} 2_{1}$. The importance of the weak reflections in deciding a centrosymmetric-non-centrosymmetric space-group ambiguity is emphasized.

Introduction

The crystal structure of rutile, one of the three naturally occurring polymorphs of TiO_{2}, was determined by Vegard (1916). Goldschmidt (1926) determined the crystal structures of the minerals mossite, $\mathrm{Fe}(\mathrm{Nb}, \mathrm{Ta})_{2} \mathrm{O}_{6}$, and tapiolite, $\mathrm{FeTa}_{2} \mathrm{O}_{6}$. They crystallize in a superstructure of the rutile type, which could be derived by a tripling of the c cell constant. The space group type was the same as for rutile, $P 4_{2} / m 2_{1} / n 2 / m$, and the cations were distributed in an ordered way over the octahedrally coordinated cation positions, thus generating the superstructure. Goldschmidt (1926) coined the term trirutile for this arrangement. This structure type has been identified in a variety of oxides and fluorides, in which mostly two different octahedrally coordinated cations occur in a ratio of 2:1 ($\left.A B_{2} X_{6}\right)$. The trirutile type is best defined narrowly as a derivative of rutile, with a tripled c cell constant and space group $P 4_{2} / m 2_{1} / n 2 / m$ (Baur, 1994). In the case of this space group, the maximal isomorphic klassengleich subgroup of the lowest index is of

[^0]: * Lists of structure factors and anisotropic displacement coefficients for the lead atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71567 (7 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: ST0617]

